No. of Printed Pages: 4

MCS-021

MCA (Revised) / BCA (Revised)

Term-End Examination

09152

June, 2019

MCS-021: DATA AND FILE STRUCTURES

Time: 3 hours

Maximum Marks: 100

(Weightage : 75%)

3

Note: Question number 1 is compulsory. Attempt any three questions from the rest. All algorithms should be written nearer to 'C' language.

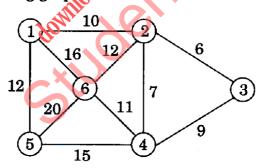
- 1. (a) Order the following functions by their complexity in increasing order:
 - (i) n!
 - (ii) 3ⁿ
 - (iii) $\sqrt{\mathbf{n}}$
 - (iv) $\log_2(n!)$
 - (b) For the function defined by $f(x) = 2x^3 + 4x + 1$, show that $f(x) = O(x^3)$ using the definition of O (big Oh).

(c) Convert the following prefix notation into infix notation:

3

6

6


6

6

+ - * ** ABCD/E/F + GH

(d) Write an algorithm to reverse a string using a stack. Illustrate all the intermediate steps of your algorithm on the string "IGNOU".

(e) Use Kruskal's algorithm to construct a minimum cost coanning tree of the following graph:

(f) Apply 2-way mergesort for sorting the following numbers and show all the intermediate steps:

4 6 3 7 1 9 2 8 5

(g) Insert the following data items into a B-Tree of order 5:

abehpckdmlnutxy

(h)	Explain how a polynomial can be represented using an array. Write an	
	algorithm to add two polynomials.	6
(a)	Write an algorithm to do insertion sort and analyze its run-time complexity.	10
(b)	Write a program that accepts a set of	
(2)	integers and creates a singly linked list of	•
	these integers. Then it should prompt for	
	input of an integer and delete the node	
	consisting of that integer from the singly	
	linked list.	10
(a)	Write a recursive algorithm of preorder and	•
, ,	inorder traversal of a binary tree and	
	explain it.	10
(b)	What is a strongly connected component of	
	a graph? Write an algorithm for finding	
	strongly connected components of a graph.	10
(a)	Explain Floyd-Warshall's all pair shortest	
	path algorithm. How is it different from	
	single source shortest path?	10
(b)	Given the input file	
	(5, 10, 15, 8, 20, 16, 28, 35, 55, 40, 30), construct	
	(i) A binary tree	3
	(ii) Heap	4
		-

2.

3.

Download all NOTES and PAPERS at Stude

(c) Draw the graph corresponding to the following adjacency matrix:

3

10

5. (a) Construct an AA-tree using the following numbers (nodes). Show all the intermediate steps and balancing of tree.

7 14 21 80 4 50 30 40

- (b) Write important properties of: 10
 - (i) Binary search tree
 - (ii) Red black tree